Уксусный альдегид имеет и другое название ацетальдегид, этанал или метилформальдегид. Его формула имеет вид: CH3-CHO.
Если рассматривать соединение с точки зрения химических свойств, то вещество представляется собой жидкость, не имеющую цвет, но с едким резким запахом. Отлично растворяется в воде и имеет температуру кипения в 20ºС.
https://www.youtube.com/watch?v=
Самый популярный способ, с помощью которого возможно получение альдегида – окисление этилового спирта, но с использованием меди или серебра в качестве катализатора. После дегидратации, помимо альдегида образуется также водород и вода.
Это один из самых часто встречаемых соединений, которое можно найти в любом продукте, начиная от хлебобулочных изделий, заканчивая плодами растений. Он является составной частью дыма от сигарет и автомобильных выхлопов. Именно поэтому он относится к категории сильно ядовитых веществ, которые загрязняют токсинами атмосферу.
Этанол или этиловый спирт является простым спиртом, обозначается как C2H5OH, относится к категории одноатомных спиртов. Представляет собой жидкость, летучего состава и горючего.
Важнейшая составляющая алкогольных напитков, оказывает угнетающий эффект на нервную систему человека, при этом успокаивает его. Является составной частью топливной жидкости, многих растворителей и широко применяется в медицине, как средство дезинфекции и антисептик. Из этилового спирта готовят настойки, добавляют в бытовую химию, антифризы и омыватели. Паста для чистки зубов, парфюм и гели для душа состоят из спирта.
Он является результатом химических реакций, т.к. в природе не встречается.
Основные пути получения:
- Брожение. Продукты сельскохозяйственной деятельности подвергают воздействию дрожжей, вследствие чего и выделяется этанол, но его концентрация не так высока, не достигает и 15%.
- Производство в промышленных условиях. После уникальных автоматизированных этапов получения этилового спирта, получается жидкость с высокой концентрацией.
Самый популярный способ, с помощью которого возможно получение альдегида – окисление этилового спирта, но с использованием меди или серебра в качестве катализатора. После дегидратации, помимо альдегида образуется также водород и вода.
Это один из самых часто встречаемых соединений, которое можно найти в любом продукте, начиная от хлебобулочных изделий, заканчивая плодами растений. Он является составной частью дыма от сигарет и автомобильных выхлопов. Именно поэтому он относится к категории сильно ядовитых веществ, которые загрязняют токсинами атмосферу.
Термические свойства уксусного альдегида
1. Уксусный альдегид – это жидкость без цвета, имеющая резкий неприятный запах.
2. Хорошо растворяется в эфире, спирте и воде.
3. Молярная масса составляет 44,05 грамм/моль.
4. Плотность равна 0,7 грамм/сантиметр³.
1. Температура плавления равна -123 градусам.
2. Температура кипения составляет 20 градусов.
3. Температура воспламенения равна -39 градусам.
4. Температура самовоспламенения составляет 185 градусов.
Процесс получения Ацетальдегида
C2H5OH CuO(t) = Cu H2O CH3CHO,
Несомненно, процесс достаточно удобный, но существует и иной способ получения уксусного альдегида.
Процесс дегидрирования этилового спирта был популярен еще 50 лет назад.
Множество положительных моментов имеет данный способ, к примеру:
- Не выделяются ядовитые токсины, отравляющие организм и атмосферу.
- Несложные и мягкие условия осуществления реакции, нет опасности для жизни человека.
- Вследствие реакции получается водород. Это одно из самых универсальных веществ, которому могут найти различные применения.
- Нет нужды использовать различные нефтяные продукты, поскольку за основу берется только этиловый спирт.
Итак, превращение происходит под воздействием примерно 400°С, отщепляется водород, каталитическим способом. Гидрогенизация – это метод каталитического синтеза, который основывается на окислительно-восстановительных процессах, связанных подвижным равновесием.
C2H5OH → CH3CHO H2
С увеличением температуры и резким снижением давления молекулы водорода направлены на преобразование ацетальдегида, но как только характеристики поменяются, давление повысится, а температура упадет, H2 приведет к образованию этанола. Именно такое воздействие условий составляет реакция гидрогенизации.
Для данного метода также используют катализатор в виде меди или цинка. Медь – сильный и активный катализатор, который способен, во время реакции, потерять активность. Поэтому создают некую смесь из меди, оксида кобальта (не более 5%), и всего 2% оксида хрома, все это наносится на асбест. Если имеется данный катализатор, то реакцию осуществляют всего при 280-300° С. Степень трансформации этанола в такой ситуации равна 33-50% за один проход через катализатор.
Преимущество второго метода перед первым в том, при дегидрировании образуется намного меньше побочных токсических веществ, но, при этом фиксируется высокий показатель ацетальдегида в контактных газах. Контактные газы данной реакции это пары ацетальдегида и водорода, в равном соотношение (обычно 1:1), а вот контактные газы окислительного процесса состоят из разбавленного азотом спирта, который вводится с воздухом.
Еще одним важным достоинством является то, что из дегидрированного спирта появляется этилацетат, он является очень ценным продуктом.
CH3CHO HgSO4 H2O = CH3COOH H2SO4 Hg
При этом стоит учитывать, что ртуть – это не ускоритель и чтобы остановить заключающую реакцию, добавляют сульфат железа (III), именно он и проводит окисление ртути.
Чтобы не допустить гидролиз солей, добавляют серной кислоты. А порой, если нет сульфата ртути (II), готовят раствор самостоятельно: в серной кислоте растворяют оксид ртути. Берут примерно в соотношении 4:1 серной кислоты и оксид ртути.
Получается химический раствор и ради отщепления уксусной кислоты, его необходимо профильтровать и добавить раствор щелочи.
Результат уксусной кислоты высчитывают только с учетом того, что карбид кальция чистейший. Выявить соотношение в процентах полученной кислоты к теоретическому показателю – один из путей, как можно получить выход уксусной кислоты.
Для данного метода также используют катализатор в виде меди или цинка. Медь – сильный и активный катализатор, который способен, во время реакции, потерять активность. Поэтому создают некую смесь из меди, оксида кобальта (не более 5%), и всего 2% оксида хрома, все это наносится на асбест. Если имеется данный катализатор, то реакцию осуществляют всего при 280-300° С. Степень трансформации этанола в такой ситуации равна 33-50% за один проход через катализатор.
10% раствор гидроксида натрия
Аммиачный раствор гидроксида серебра (реактив Толленса)
В чистую пробирку наливают 4 мл 10% раствора гидроксида натрия и осторожно нагревают на пламени горелки до кипения. Затем содержимое выливают, пробирку охлаждают и несколько раз ополаскивают водой.
В подготовленную таким образом пробирку наливают 2 мл формалина (раствор, содержащий 40 % формальдегида, 8 % метилового спирта и 52 % воды), 2 мл свежеприготовленного аммиачного раствора оксида серебра, и смесь слегка встряхивают. Затем содержимое очень осторожно нагревают, вращая пробирку так, чтобы жидкость распределялась по стенкам.
H-COH 2[Ag(NH3)2]OH ® H-COOH 2Ag¯ 4NH3 H2O
Опыт № 27. Реакция диспропорционирования формальдегида
(реакция Канницаро)
Индикатор метиловый красный
2НСНО Н2О → НСООН СН3ОН
Опыт № 28. Окисление формальдегида гидроксидом меди (II)
В щелочной среде
20% раствор гидроксида натрия
5% раствор сульфата меди
В пробирку наливают 2 мл 20% раствора гидроксида натрия (0,01 моль) и 0,5 мл 5% раствор сульфата меди (1,6∙10-4 моль). К полученному осадку гидроксида меди (II) добавляют 1 мл 40% водного раствора формальдегида (0,016 моль).
Нагревают только верхнюю часть раствора так, чтобы нижняя осталась для контроля холодной.
H-CHO 2Cu(OH)2 ® H-COOH 2CuOH¯ H2O
2CuOH ® Cu2O¯ H2O
H-CHO Cu2O ® H-COOH 2Cu¯
Опыт № 29. Цветные реакции на альдегиды
Формальдегид (10% водный раствор)
0,5% водный раствор резорцина
Раствор фуксинсернистой кислоты
Концентрированная серная кислота
В пробирку наливают 2 мл 10% формальдегида (7∙10-3 моль) и прибавляют 0,5 мл раствора фуксинсернистой кислоты. Через 1-2 минуты раствор приобретает розово-фиолетовое окрашивание.
В другую пробирку наливают 2 мл 0,5% водного раствора резорцина (9,1∙10-5 моль), добавляют 1 мл 10% водного раствора формальдегида (3,5∙10-3 моль).
Опыт № 30. Образование альдегидами и кетонами гидросульфитных производных
Альдегиды и кетоны, имеющие метильную группу, связанную с кетонной группой, легко вступают в реакцию с гидросульфитом натрия, образуя кристаллические вещества.
Насыщенный раствор гидросульфита натрия
Ацетон
H-CHO NaHSO3 ® H-CH(OH)-SO3Na¯
Гидросульфитные соединения легко разлагаются под действием разбавленных растворов кислоты, щелочи или соды с выделением свободного альдегида или кетона, поэтому гидросульфитные соединения используют для выделения и очистки альдегидов и кетонов.
Процесс получения ацетальдегида из этилового спирта происходит по следующей формуле: C2H5OH CuO = CH3CHO Cu H2O
В данном случае используют этанол и оксид меди, под воздействием высокой температуры происходит реакция окисления и получается уксусный альдегид.
Существует также другой метод получения альдегида – дегидрирование спирта. Он появился еще около 60 лет назад и пользуется популярностью до сих пор. Дегидрирование имеет множество положительных качеств:
- нет выделений ядовитых токсинов, отравляющих атмосферу;
- комфортные и безопасные условия реакции;
- в процессе реакции выделяется водород, который тоже можно использовать;
- не нужно тратиться на дополнительные составляющие – достаточно одного этилового спирта.
Получение альдегида данным методом происходит так: этанол нагревают до четырехсот градусов и каталитическим способом из него выходит водород. Формула процесса выглядит так: C2H5OH ͢ CH3CHO H2.
При использовании метода дегидратации применяют также медный или цинковый катализатор. Медь в данном случае — очень активное вещество, способное терять активность во время реакции. Поэтому делают смесь из меди, оксидов кобальта и хрома, а затем наносят ее на асбест. Это дает возможность провести реакцию при температуре 270–300°C. В этом случае трансформация этанола достигает от 34 до 50%.
Если сравнивать метод окисления спирта с методом дегидратации, то второй обладает явным преимуществом, так как при нем образуется намного меньше токсических веществ и одновременно фиксируется наличие в контактных газах высокой концентрации этаналя. Эти газы при дегидратации содержат лишь ацетальдегид и водород, а при окислении имеют в составе разбавленный азотом этанол. Поэтому получить ацетальдегид из контактных газов легче и потерь его будет намного меньше, чем при окислительном процессе.
Еще одним важным качеством метода дегидратации является то, что полученное вещество применяют для производства уксусной кислоты. Для этого берут сульфат ртути и воду. Получается реакция по следующей схеме: CH3CHO HgSO4 H2O = CH3COOH H2SO4 Hg.
Для завершения реакции добавляют сульфат железа, который окисляет ртуть. Чтобы выделить уксусную кислоту, полученный раствор фильтруют и добавляют щелочной раствор.
Если нет готового HgSO4 (неорганическое соединение из соли металла и серной кислоты), то его готовят самостоятельно. Необходимо в 4 части серной кислоты добавить 1 часть оксида ртути.
Дополнительный способ
Существует еще один способ получения уксусного альдегида. Его используют для определения качества полученного спирта. Для его реализации потребуются: фуксинсернистая кислота, этиловый спирт и хромовая смесь (K2Cr2O7 H2SO4).
В сухую склянку вливают хромовую смесь (2 мл), кладут кипятильный камень и добавляют этиловый спирт (2 мл). Пробирку накрывают трубкой для отвода газов и вставляют другой конец в емкость с фуксинсернистой кислотой. Смесь нагревают, в результате она меняет свой цвет на зеленый. В процессе реакции этанол окисляется и превращается в ацетальдегид, который в виде паров идет по трубке и, попадая в пробирку с фуксинсернистой кислотой, окрашивает ее в малиновый цвет.
Уксусный альдегид имеет химическую формулу CH3COH. На вид он бесцветный, прозрачный, с резким запахом, может кипеть уже при комнатной температуре 20°C, с легкостью растворяется в воде и органических соединениях. Так как наука не стоит на месте, то сейчас получить уксусный альдегид из этилового спирта довольно просто.
Алкоголь и метилформальдегид
Предположительно рассматриваемое нами вещество является канцерогеном для человека, так как на сегодняшний день существуют доказательства канцерогенности уксусного альдегида в различных экспериментах на животных. Кроме этого, метилформальдегид повреждает ДНК, вызывая тем самым несоразмерное с массой тела развитие мышечной системы, которое связано с нарушением обмена белка в организме.
Было проведено исследование 800 алкоголиков, в результате которого ученые пришли к выводу, что у людей, подвергшихся воздействию уксусного альдегида, есть дефект в гене одного фермента – алкогольдегидрогеназы. По этой причине такие пациенты больше подвержены риску развития онкологического заболевания почек и верхней части печени.
1.2.5 Получение ацетальдегида дегидрированием этилового спирта
CH3 – CH2–OH CH3–CHO H2
При получении ацетальдегида этим методом применяют медные или медно-цинковые катализаторы. Медь для данного процесса является высокоактивным катализатором, но она быстро теряет активность. Хорошим стойким катализатором является медь с добавками 5% оксида кобальта и 2% оксида хрома, нанесенная на асбест.
1), в то время как контактные газы окисления спирта разбавлены азотом, вводимым с воздухом. Поэтому выделение ацетальдегида из контактных газов дегидрирования спирта легче и сопряжено с меньшими потерями альдегида. Кроме того, при дегидрировании этилового спирта образуется ценный побочный продукт– этилацетат (9-10% от количества ацетальдегида).[5, с. 492]
1.2.6 Получение ацетальдегида окислением этилена
Образование ацетальдегида при взаимодействии этилена с водным раствором хлористого палладия наблюдал Филлипс ещё в 1894 г. Образующийся в безводной среде комплекс этилена с хлористым палладием был описан Карашем в 1938 г. При взаимодействии палладиевого комплекса с водой происходит окисление активированного олефина с образованием ацетальдегида, выделением палладия и хлорида водорода. [6, с.302]
CH2=CH2 PdCl2 H2O CH3CHO Pd 2HCl
Pd 2HCl 0,5O2 PdCl2 H2O
В первом (одностадийном) варианте условия процесса и соотношение реагентов должны быть такими, чтобы скорости окисления этилена и Pd были одинаковыми (или последняя выше). Вместе с тем скорость второй реакции значительно ниже, чем первой, поэтому активность катализатора в таком варианте процесса быстро падает.
Cu2Cl2 2HCl 0,5O2 2CuCl2 H2O
или Pd 2FeCl3 PdCl2 2FeCl2
2FeCl2 2HCl 0,5O2 2FeCl3 H2O
Соли Cu2Cl2 и FeCl2 легко окисляются кислородом воздуха, при этом металл переходит в свое исходное высшее валентное состояние. Следовательно, совмещение этих реакций создает предпосылки для осуществления в промышленном масштабе получения ацетальдегида прямым окислением этилена молекулярным кислородом.[3, с. 455]
При этом, если процесс осуществляется в одном аппарате, то во избежание разбавления непрореагировавшего этилена окисление необходимо проводить чистым кислородом. Избыток же этилена вводится как с целью быстрого вывода ацетальдегида из зоны реакции, так и для создания соотношения компонентов за пределами взрывоопасных концентраций.
СН2 = СН2 0,5О2СН3СНО, ΔН = –221,5 кДж/моль
Скорость отдельных реакций и, соответственно, скорость образования побочных продуктов зависит от условий проведения процесса. На скорость суммарной реакции, селективность процесса и выход ацетальдегида существенно влияет состав катализаторного раствора (содержание PdCl2, CuCl2 и FeCl2), кислотность среды, давление, температура, соотношение этилена и окисляющего агента.
Соотношение между общим суммарным содержанием металлов окислительно-восстановительной системы (Сu, Fe или смеси) и Pd должно быть не меньше 15:1. На практике используется соотношение (25 :1)-(50:1). Такой избыток меди или железа обусловливается высокой стоимостью Pd.
Конверсия олефина зависит также от мольного соотношения в катализаторе меди (железа) и галогена; оно поддерживается в узком диапазоне (1:1,4-1:1,8). Поэтому добавляемый в ходе процесса галоген в виде хлорида или этилхлорида должен дозироваться достаточно точно, так как при соотношении меньшем, чем 1:1, снижается конверсия этилена, а при соотношении 1;2 и выше реакция замедляется. В этом случае добавляют ацетат меди [3, с. 457].
Процесс следует проводить в кислой (рН=0,8-3,0) или нейтральной среде (рН= 6,0-7,5), так как при повышении рН из катализаторного раствора будет выпадать хлорид меди (I), что приводит к снижению выхода ацетальдегида и забивки отверстий газораспределительного устройства. Растворимость хлорида Сu(I) можно повысить добавлением в катализаторный раствор муравьиной, уксусной, а лучше — трихлоруксусной кислоты.
Растворимость солей в воде ограничена, поэтому образуются разбавленные растворы катализатора, что приводит к его низкой удельной производительности. В связи с этим выгоднее работать с катализатором, находящимся в виде суспензии в воде или в разбавленной уксусной кислоте (шламовый катализатор). Применение шламового катализатора позволяет сочетать высокую концентрацию катализатора с хорошим отводом тепла; образовывать стабильную пену, что в свою очередь приводит к хорошему диспергированию газа.
В качестве сырья можно использовать как концентрированный этилен, так и этан-этиленовую фракцию. Наличие малых количеств водорода, оксида и диоксида углерода, предельных углеводородов не мешает протеканию процесса. Содержание непредельных углеводородов и серы должно быть незначительным (ацетилена www.KazEdu.kz
Алкоголь и метилформальдегид
Строение и свойства формальдегида: это бесцветный газ с резким удушливым запахом, ядовит; он хорошо растворим в воде; водный 40 %-ный раствор формальдегида называется формалином.
Химические свойства формальдегида.
а) реакция окисления протекает очень легко – альдегиды способны отнимать кислород от многих соединений;
б) при нагревании формальдегида с аммиачным раствором оксида серебра (в воде оксид серебра нерастворим) происходит окисление формальдегида в муравьиную кислоту НСООН и восстановление серебра. Образование «серебряного зеркала» служит качественной реакцией на альдегидную группу;
г) альдегиды восстанавливают гидроксид меди (II) до гидроксида меди (I), который превращается в оранжевый оксид меди (I);
д) реакция протекает при нагревании: 2СuОН → Сu2О Н2О;
е) эта реакция также может быть использована для обнаружения альдегидов;
а) реакция присоединения протекает за счет разрыва двойной связи карбонильной группы альдегида;
б) присоединение водорода, которое происходит при пропускании смеси формальдегида и водорода над нагретым катализатором – порошком никеля, приводит к восстановлению альдегида в спирт;
в) формальдегид присоединяет также аммиак, гидросульфит натрия и другие соединения.
1) в промышленности формальдегид получают из метанола, пропуская пары спирта вместе с воздухом над нагретым до 300 °C медным катализатором: 2СН3ОН O2 → 2НСНО 2Н2О;
2) важным промышленным способом является также окисление метана воздухом при 400–600 °C в присутствии небольшого количества оксида азота в качестве катализатора: СН4 O2 → СН2О Н2О.
Применение формальдегида: 1) формальдегид в больших количествах применяется для производства фенолоформальдегидных смол; 2) он служит исходным веществом для производства красителей, синтетического каучука, лекарственных веществ, взрывчатых веществ и др.
Особенности ацетальдегида: ацетальдегид (или уксусный альдегид, или этаналь) – это бесцветная жидкость с резким запахом, хорошо растворимая в воде; присоединение водорода к ацетальдегиду протекает в тех же условиях, что и к формальдегиду.
Особенности паральдегида: это жидкость, которая застывает в кристаллическую массу при 12 °C, а при нагревании в присутствии разбавленных минеральных кислот переходит в ацетальдегид; обладает сильным снотворным действием.